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Abstract
We present a study of the two-orbital degenerate Hubbard model in which the exact numerical
solution on a regular tetrahedron is obtained via suitable implementation of the symmetries
generated by the spin, the pairing and the orbital pseudospin operators. In particular, we show
that a large variety of high-spin magnetic ground states can develop away from half filling,
depending on the values of the electron density and the parameters of the model. As the
tetrahedron is the simplest finite-size cluster where hopping processes connect all pairs of sites
with constant probability, the study is extended by providing the exact analytical solution of the
model on an infinite lattice in the unconstrained hopping limit.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The minimal model able to describe the physics of the
transition metals and their oxides is the Hubbard model, which,
in its simplest form, contains the local Coulomb interaction
between the electrons in a conduction band originating from
a single orbital. In spite of its apparent simplicity, such a
single-band model has been deeply investigated in the past
as an effective model for the analysis, often only qualitative,
of some low-energy properties characterizing the behavior
of the above mentioned systems. Nevertheless, it is widely
accepted that in several 3d and 4d transition metal oxides
a consistent description of the experimental observations
requires the use of more realistic models which include, at
least, orbital degrees of freedom [1]. Moreover, the orbital
degeneracy is known to play a crucial role in many correlated
electron systems, allowing for the explanation of remarkable
properties like colossal magnetoresistance [2], metal–insulator
transition [1] and orbital ordering [3]. Typical orbitally
degenerate compounds are V2O3 [4], whose properties are
essentially determined by the electrons in a doubly degenerate
d band, and LaTiO3 [5], which exhibits d bands with triple
degeneration.

Many theoretical approaches have so far been proposed
to describe the effect of the strong Coulomb interaction
in systems with two-orbital degeneracy. Among them we
quote variational methods [6, 7], Gutzwiller [8, 9], slave-
boson methods [10, 11] and Lanczos diagonalization on finite-
size clusters [12]. Nevertheless, theoretical advances in
the comprehension of these systems are mainly due to the
application of the dynamical mean-field theory, which has
led to an increased understanding of the correlation effects
associated with the Mott metal–insulator transition [13–16].
Indeed, due to the presence of orbital degrees of freedom,
the Mott physics contains in this case extra elements of
unconventional character associated, for instance, with the
possibility of having some of the d orbitals displaying
localized spin and orbital degrees of freedom, and others
providing itinerant electrons. In the case of subbands with
different bandwidths, this gives rise to separate orbital-
selective Mott transitions occurring at different Coulomb
strengths, eventually merging into a single critical point
only under specific conditions [17–19]. Recent remarkable
achievements unambiguously confirm these findings, showing
that two distinct and successive Mott transitions are found
within the two-orbital Hubbard model [20, 21]. Nevertheless,
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a fully reliable numerical approach describing multi-band
degenerate Hubbard models is probably still lacking, since
imaginary time continuation, high computational time and
fundamental difficulties at low temperatures still provide
severe limits for numerical calculations.

As far as exact results are concerned, we can say that
they are at present still more rare. However, it has been
recently shown that symmetry features of the ground state
at half filling of a generalized two-orbital Hubbard model
including the Hund’s rule coupling can be obtained in a
large range of the parameter space, combining the property
of spin reflection positivity and the use of special unitary
transformations [22]. In particular, it has been possible to
extract relevant symmetry features related to the orbital, spin
and η-pairing pseudospin operators, determining, at half filling
and for different parameter regimes, the spin, orbital and
η-pairing pseudospin quantum numbers in the ground state.
Moreover, these results allowed us to show rigorously that (i)
at half filling the charge gap is always larger than both the
spin-excitation gap and a properly defined orbital gap [23], and
(ii) in one and two dimensions the two-orbital Hubbard model
does not exhibit orbital order at any filling and at any finite
temperature, if narrow conduction bands are considered [24].
Relevant results in this context have also been obtained in
connection with the SU(4) symmetry of the n-fold degenerate
Hubbard model with inter-orbital Coulomb repulsion, in the
absence of the Hund coupling [25].

On more general grounds, the two-orbital Hubbard model
is a typical correlated electron model describing systems where
the strength of the interactions between particles is at least
comparable with their kinetic energy. Due to the intrinsic
non-perturbative nature of the problem, extreme difficulties are
encountered to devise theoretical tools allowing us to deal with
these models in a reliable way. For this reason, a huge amount
of work has been devoted in the last decades to their solution
on clusters made of a relatively small number of sites, obtained
using exact diagonalization, Lanczos or quantum Monte Carlo
methods [26]. These approaches also suffer from several
limitations, such as the rapid increase of the computational
effort with the cluster size or the unavoidable presence of finite-
size effects limiting the possibility of extracting information
on the low-energy scale behavior. Nonetheless, in many cases
they provide useful indications on the physics of the model and
often represent the starting point of powerful approximations
where the infinite lattice problem is mapped into a finite-
size cluster self-consistently embedded in a suitably defined
mean field [27, 28]. Guided by this motivation, we present
in this paper the exact solution of the two-orbital Hubbard
model on a small cluster having the structure of a regular
tetrahedron. Specific features of this kind of cluster are on
the one hand the fact that it represents the smallest three-
dimensional unit generating the face-centered cubic lattice,
and on the other hand the constancy of the hopping amplitude
between every possible pair of sites that can be selected within
the cluster. We show that the exact solution of the two-orbital
Hubbard model on a tetrahedron indicates that complete or
weak ferromagnetism appears in the ground state away from
half filling, for suitable choices of the local Coulomb repulsion,
the Hund coupling and the hopping amplitude.

The condition of constant hopping amplitude, which has
in the regular tetrahedron its three-dimensional realization, can
also be assumed to hold in an infinite lattice. This choice gives
rise to the so-called infinite range hopping limit which has been
shown in the past to be exactly solvable in the case of several
correlated electron models. In the second part of the paper we
show that the general approach developed in this context can
successfully be applied to the two-orbital Hubbard model too,
leading to a particularly simple form for the partition function
and all the thermodynamic quantities which can be derived
from it.

The paper is organized as follows. In section 2 we
introduce the two-orbital Hubbard Hamiltonian. In section 3
we present the exact diagonalization study of the model
on a tetrahedron, devoting special attention to the possible
occurrence of magnetic ground states for suitable values
of the filling and the microscopic parameters of the model
Hamiltonian. Section 4 is devoted to the analysis of the exact
solution of the same model in the infinite range hopping limit
on an infinite lattice. Section 5 contains a summary of the
results, together with the conclusions.

2. The model

We consider a lattice system with two equivalent orbitals on
each site. The corresponding Hamiltonian is

H = Hkin + Hel-el (1)

where Hkin is the kinetic term describing electron hopping
between orbitals of the same type on nearest-neighbor sites,

Hkin = t
∑

〈i j〉,α,σ

d†
iασ d jασ + h.c., (2)

d†
jασ being the creation operator for an electron with spin σ

at site i in the α orbital (α = 1, 2), and Hel-el is the term
describing electron–electron interaction [6, 13, 14, 16]:

Hel-el = (U + J )
∑

i,α

niα↑niα↓ + U
∑

i,σ

ni1 σ ni2σ̄

+ (U − J )
∑

i,σ

ni1σ ni2σ + J
∑

i,σ

d†
i1σ d†

i2σ̄ di1σ̄ di2 σ . (3)

We notice that Hel-el contains intra-site interactions only,
distinguishing among the cases when electrons belonging to
different orbitals have the same spin or opposite spins (here
σ̄ = −σ ). Moreover, with the above choice of the coupling
constants the total Hamiltonian is rotationally invariant with
respect to the spin and the orbital degrees of freedom. The
condition U > J is also assumed (with U and J being
both positive), in order to ensure that the total inter-orbital
interaction between electrons with the same spin is repulsive4.
From now on all the energies are expressed in units of the
hopping amplitude t .

Let us now introduce the spin, pairing and pseudospin
orbital operators, defined respectively as

S = 1
2

∑

i,σ,σ ′,α
d†

iασ (σ )σσ ′diασ ′ (4)

4 A comprehensive discussion on the form of the interaction parameters can
be found in [2].
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η = 1
2

∑

i,α,σ,σ ′
D†

iασ (σ )σσ ′ Diασ ′ (5)

T = 1
2

∑

i,α,α′ ,σ
d†

iασ (σ )αα′ diα′σ , (6)

where σ ≡ (σx , σy, σz) is the vector having the Pauli matrices
as components, and Diα is a two-component vector having
elements Diα↑ = diα↑ and Diα↓ = d †

iα↓.
In (5), η is the pairing operator introduced by Yang [29],

extended to the case of two types of electron. The symmetry
related to this operator is a kind of hidden symmetry in the
particle–hole space, for which the generators are obtained
from the usual spin SU(2) ones through an electron–hole
transformation involving only one kind of spin. As the operator
S is associated with a symmetry involving spin degrees of
freedom, similarly the symmetry generated by the operator η

is related to the charge degrees of freedom. This is evident
from the fact that the z component of η is equal to Ntot/2 − Ns,
where Ntot is the total number operator and Ns is the number of
lattice sites. On the other hand, the orbital operator T defined
in (6) has again properties analogous to those of the spin 1/2
operators. Indeed, on a given site T + takes an electron in
orbital 2 and moves it to orbital 1, T − produces the reverse
process, and Tz has eigenvalues +1/2 or −1/2 depending on
whether an electron is in orbital 1 or 2, respectively. The
operators S, η and T commute with the Hamiltonian (1) and
thus correspond to symmetries of the model which can be used
to classify eigenstates and eigenvalues [22, 23].

3. The exact solution on a tetrahedron

We present in this section the exact numerical solution
of the two-orbital degenerate Hubbard model on a regular
tetrahedron. This cluster geometry has often been considered
in the past in exact diagonalization studies of the one-
band Hubbard model [30–33], in some cases with the
motivation that a tetrahedron can be seen as the smallest three-
dimensional building block constituting a face-centered cubic
lattice. Besides numerical approaches, a complete analytical
solution on a tetrahedron has recently been given for the
single-orbital Hubbard model including the nearest-neighbor
Coulomb correlation and the nearest-neighbor Heisenberg
exchange [34].

In our approach the numerical diagonalization of the
Hamiltonian has been performed in Fock subspaces specified
by the values of the third component of the operators S,
η and T. The implementation of these symmetries leads
to a significant reduction of the size of the matrices to be
diagonalized, a size which reaches its maximum value, equal
to 1810 × 1810, in the case of half filling (eight electrons
on four sites) for Sz = ηz = Tz = 0. We notice that
when the orbital symmetry is neglected the largest size of the
matrices that one has to diagonalize is 4900 × 4900, implying
that the simultaneous application of spin, charge and orbital
symmetries considerably reduces the dimension of the Fock
space. We have devoted special attention to the study of the
possible occurrence, for suitable values of the parameters and
of the filling, of high-spin ground state configurations. We have

Figure 1. Energies Ei of the first few excited states (i = 1, . . . , 5),
measured with respect to the ground state energy E0, for Ne = 8.
The specified values of S and d denote the spin quantum number and
the number of (2S + 1)-plets with a given energy Ei occurring in the
spectrum, respectively. For increasing values of J the energy E1 of
the first excited state, though getting closer and closer to E0, remains
separated from it, always leaving the ground state non-degenerate.
All the energies are given in units of the hopping amplitude t .

first of all verified that in the case of half filling the ground state
is always non-magnetic, in the sense that for any possible value
of the parameters t , J and U the electrons minimize the energy,
always arranging themselves in zero spin configurations. In
figure 1 we report the energies Ei of the first few excited
states, evaluated for J = 1 and rescaled with respect to the
ground state energy E0. We can see that several non-zero spin
states are found among the low-lying excited states, but they all
remain well separated from the non-magnetic non-degenerate
ground state for every possible choice of the parameters. This
result was to some extent expected as the natural generalization
to the two-band case of well established results concerning
one-band models [35].

A high-spin ground state in contrast appears when one
hole is added to the half-filled configuration and positive values
of the hopping amplitude t are considered. As one can see
from figure 2, in this case the total spin is maximized for
sufficiently high values of J and U . In particular, as soon
as the Hund’s coupling is greater than a critical value Jc1,
approximately equal to 1.1, a ground state with maximum
spin S = 7/2 is established only when U exceeds a critical
value Uc which tends to decrease as J is increased above
Jc1. In the case considered in figure 2, Uc goes to zero for
J approximately equal to Jc2 = 5, indicating that above Jc2 a
maximum spin ground state develops, however small the value
of U–J . It should also be noted that when J is greater than

3



J. Phys.: Condens. Matter 20 (2008) 465216 A Romano et al

Figure 2. Energy difference between the lowest eigenstates
belonging to subspaces with different Sz in the case of seven
electrons on a regular tetrahedron.

Jc1 but sufficiently far from Jc2 the increase of U makes the
system approach the maximum spin state passing through two
consecutive transitions, the first one at U = Uc0 < Uc from
a state with S = 3/2 to a state with S = 5/2, and the second
one at U = Uc from the latter to the state with maximum spin
S = 7/2. For the parameter choice considered here, we deduce
from figure 2 that the first transition disappears (Uc0 → 0)
for J slightly higher than 3. These results are summarized
in the U versus J phase diagram reported in figure 3. As a
general comment, we notice that all these results concerning
the case of one hole injected within a half-filled configuration
present evident analogies with the Nagaoka’s theorem [36] for
the one-band Hubbard model. The latter states that for t > 0
and Ne = Ns − 1 (Ne being the number of electrons) the spin
in the ground state is maximized for sufficiently high values
of U on several kinds of lattice structures, including the face-
centered cubic one. We stress, however, that by no means do
we intend that our results are consequences or manifestations
of Nagaoka’s theorem (which, moreover, refers to the single-
band case only). The lattice connectivity condition required for
the theorem to be valid certainly does not hold on a tetrahedron,
so that we can only suggest an analogy implying no direct
relationship between our results and the theorem itself.

Always referring to the case of positive hopping
amplitude, when a second hole is added to the system (Ne =
6), the highest possible spin value, S = 3, is reached in the
ground state for any possible choice of J and U . In a similar
way, for Ne = 5 the system is never in the lowest possible spin
state S = 1/2, but now, as one can see from figure 4, we find

Figure 3. U versus J phase diagram giving the ground state value of
the total spin quantum number for Ne = 7.

Figure 4. Energy difference between the lowest eigenstates
belonging to subspaces with different Sz in the case of five electrons
on a regular tetrahedron.

a lowering of the total spin from the maximum value S = 5/2
to S = 3/2 as U is increased, taking place at a critical value
of U which grows as increasing values of J are considered.
In this respect, it should be noted that the increase of U plays
here a role which is opposite compared to the filling Ne = 7, in
the sense that, while in this latter case it produces a transition
towards a maximum spin state, in contrast for Ne = 5 it leads
to a reduction of S. Finally, in the quarter-filled case, Ne = 4,
we observe a similar effect introduced by the increase of U , but
this time the transition at Uc occurs directly from the highest
(S = 2) to the lowest (S = 0) possible spin ground state, with
Uc again increasing with J (see figure 5).
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Figure 5. Energy difference between the lowest eigenstates
belonging to subspaces with different Sz in the case of four electrons
on a regular tetrahedron.

We stress once more that the results discussed so far
all refer to the case of positive hopping amplitude. For
t < 0, in contrast, the ground state always corresponds
to the lowest possible spin state, for all electron densities
going from half filling down to quarter filling. However, the
same kind of high-spin ground states just found for Ne <

2Ns and t > 0 symmetrically develop for Ne > 2Ns

and t < 0 due to the electron–hole symmetry exhibited by
the Hamiltonian (3). Since creating an electron amounts to
destroying a hole (and vice versa), we can introduce fermionic
hole operators hiασ , h†

iασ such that d†
iασ = hiασ . Then one

can show that on a given lattice of Ns sites the spectrum of
the Hamiltonian He ≡ H (−|t|, diασ , d†

iασ ) for Ne electrons
with negative hopping amplitude is related to the spectrum of
the Hamiltonian Hh ≡ H (|t|, hiασ , h†

iασ ) for Nh = 4Ns − Ne

holes with positive hopping amplitude by the relation

Hh = He − 3U (Ne − 2Ns). (7)

Thanks to this symmetry, for t < 0 and a given number Ne

of electrons, we have a ground state characterized by the same
spin value occurring for t > 0 and an equal number of holes
(Nh = Ne). This is the reason why in table 1, where the
possible ground states emerging from our two-orbital model on
a tetrahedron are summarized, we confine ourselves to electron
fillings going from Ne = 4 to 8.

As a final comment, we point out that we have also
performed the same kind of numerical calculations referring
to a slightly different form of the two-orbital Hubbard
model, based on a fully invariant Hamiltonian differing from
the one considered here by a coupling constant between

Table 1. The nature of the ground state of the degenerate two-orbital
Hubbard model on a tetrahedron for different choices of the total
electron number. U and J are expressed in units of the hopping
amplitude t .

Ne

Sign
of t Type of ground state Comments

4 + S = 2 for U < Uc(J ) Uc increases with J
S = 0 for U > Uc(J )

4 − S = 0 (arbitrary U, J )

5 + S = 5/2 for U < Uc(J ) Uc increases with J
S = 3/2 for U > Uc(J )

5 − S = 1/2 (arbitrary U, J )

6 + S = 3 (arbitrary U, J )

6 − S = 0 (arbitrary U, J )

S = 3/2 for 0 < U < Uc1(J )
7 + S = 5/2 for Uc1(J ) < U < Uc2(J ) Uc1 and Uc2

S = 7/2 for U > Uc2(J ) decrease with J
(provided that J > Jc1)

7 − S = 1/2 (arbitrary U, J )

8 ± S = 0 (arbitrary U, J )

electrons in the same orbital equal to U + 2J , rather
than U + J , and by the presence of a pair hopping term
J

∑
i [d†

i1↑d†
i1↓di2↓di2↑ + h.c.] describing inter-orbital transfer

of electron pairs [7, 8, 17, 19–21]. The results obtained in
this case show only small quantitative deviations from the ones
reported here, so that all the conclusions drawn in this section
also remain valid for this different version of the two-orbital
model.

4. The infinite range hopping limit

In the previous section we provided the exact solution of
the degenerate two-orbital Hubbard model on a tetrahedron,
i.e. a tridimensional four-site cluster where the distance
between all possible pairs of sites is a constant. In this
situation the usual tight-binding choice of a hopping amplitude
being non-vanishing only between nearest-neighbor sites
becomes equivalent to the assumption that all possible hopping
processes are equally likely to occur. In this way, the case of
the tetrahedron can be seen as the finite size three-dimensional
realization of the so-called infinite range hopping limit, in
which the itinerancy of the electrons is realized through
unconstrained intersite processes. We are thus naturally led
to the analysis of the two-orbital Hubbard model in this limit,
applied to the case of an infinite lattice. Though rather artificial
as far as its possible applications to real systems are concerned,
this limit has its main virtue in its tractability, so that it
has often been studied in the past in connection with several
correlated electron models, such as the Hubbard model [37],
the t–J model [38], the Kondo lattice model [39] and the
Anderson lattice model [40].

If the hopping amplitude is equal to a constant t for all
possible pairs of sites that one can consider on the lattice, then
it immediately follows that

ε	k = t Ns δk,0 (8)

5
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where

ε	k = 1

Ns

∑

i j

ti j e
i 	k·( 	Ri − 	R j ). (9)

The peculiar form of ε	k , which is made of a single contribution
with 	k = 0, allows us to obtain the non-local part Hkin of the
total Hamiltonian in the simple form

Hkin = Ns t
∑

σα

d †
	k=0,α σ

d	k=0,α σ . (10)

Moreover, this result implies that in the thermodynamic limit
Hkin commutes with Hel-el, as a consequence of the fact that
the latter is the sum of many contributions with all possible
values of 	k, among which the one at 	k = 0 can be neglected
with an error of order of N−1

s , going to zero in the limit
Ns → ∞. It is thus possible to diagonalize Hkin and Hel-el

separately and write down the partition function in the form
Z = [Z(Hkin)Z(Hel-el)]Ns , where Z(Hkin) is simply equal to
exp(−4βt), with β = 1/kBT , while Z(Hel-el) has the form

Z(Hel-el) =
16∑

i=1

e−β(Ei −μNi ), (11)

with Ei being the eigenvalues of Hel-el and Ni the
corresponding eigenvalues of the total number operator. The
explicit expression of Z(Hel-el) is

Z(Hel-el) = 1 + 4z + 3(e−β(U−J ) + e−β(U+J ))z2

+ 4e−3βU z3 + e−6βU z4 (12)

where z = exp(βμ) is the fugacity. From the grand-canonical
potential � = −β−1 ln Z , fundamental thermodynamical
quantities, such as the total electron density n = N/Ns and
the total energy density e = E/Ns, can be derived. We obtain

n = − 1

Ns

∂�

∂μ
= − 1

β

[
∂

∂μ
ln Z(Hkin) + ∂

∂μ
ln Z(Hel-el)

]

= Z(Hel-el)
−1

[
4z + 6(e−β(U−J ) + e−β(U+J ))z2

+ 12e−3βU z3 + 4e−6βU z4
]

(13)

and

e = μn + 1

Ns

∂

∂β
(β�)

= μn + 4t + Z(Hel-el)
−1

{−4μz + 3[(U − J − 2μ)

× e−β(U−J ) + (U + J − 2μ) e−β(U+J )]z2

+ 12(U − μ) e−3βU z3 + (6U − 4μ) e−6βU z4
}
. (14)

From (13) we recover at low temperatures the expected
stepwise behavior of n as a function of μ, with the transitions
between two subsequent integer values of n becoming
smoother and smoother as T is increased. This is shown in
figure 6 for U = 2, J = 0.5 and three different choices of the
temperature, T = 0.02, 0.2, 0.5, all the parameters being from
now on expressed in electronvolts.

The expression of the energy density given in (13) also
allows us to obtain the dependence of the fugacity on the total
electron density. Once z(n) is substituted in (14), the zero-
temperature limit of the total energy can be studied for fixed

Figure 6. Total electron density as a function of the chemical
potential in the infinite range hopping limit for three different values
of the temperature.

values of n. In particular, we get

deG

dn

∣∣∣∣
n→1−

= 0

deG

dn

∣∣∣∣
n→1+

= deG

dn

∣∣∣∣
n→2−

= U − J

deG

dn

∣∣∣∣
n→2+

= deG

dn

∣∣∣∣
n→3−

= 2U + J

deG

dn

∣∣∣∣
n→3+

= deG

dn

∣∣∣∣
n→4−

= 3U.

(15)

It is worth noting that these values coincide, as expected, with
the values of μ at which the electron density jumps at low
temperatures from a given integer value to the subsequent one.

Some information about the conduction properties of
the ground state can be obtained from the so-called Mattis
criterion [41]. Introducing the quantities

μ− = EG(N) − EG(N − 1) (16)

μ+ = EG(N + 1) − EG(N), (17)

where EG(N) is the ground state energy for a number of
particles equal to N , we say that the system is in a metallic
state when 
μ = μ+−μ− = 0 and in an insulating state when

μ = μ+ − μ− > 0. Considering that EG(0) = EG(1) = 0,
EG(2) = U − J , EG(3) = 3U and EG(4) = 6U , we
have a kink in the chemical potential (μ+ > μ−) at quarter,
half and three-quarter filling, indicating that in these cases the
system behaves as an insulator, whereas it is metallic for all
other possible electron densities. This result presents strong
analogies with what has been found in a study of the same
model in the limit of large lattice connectivity [13].

Finally, defining the spin, charge and orbital gaps as


S = EG(S = 1, η = 0, T = 0)

− EG(S = 0, η = 0, T = 0) (18)

6
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C = EG(S = 0, η = 1, T = 0)

− EG(S = 0, η = 0, T = 0) (19)


T = EG(S = 0, η = 0, T = 1)

− EG(S = 0, η = 0, T = 0), (20)

where EG(S, η, T ) is the lowest eigenvalue of the Hamiltonian
in the subspace with quantum numbers S, η, T , it is
immediately shown that 
S = −2J , 
C = 2U + J and

T = 2J , so that we have 
S < 
T < 
C , in agreement
with a theorem recently demonstrated [23].

5. Summary and conclusions

We have performed a study of the two-orbital degenerate
Hubbard model, widely used to explain the physical properties
of many transition metal oxides, in the limit of constant
hopping amplitude. The model has been exactly diagonalized
on a tetrahedron, which besides representing a cluster
realization of the unconstrained hopping hypothesis can also
be seen as the elementary three-dimensional unit generating
the face-centered cubic lattice. The analysis has been focused
in particular on the ground state properties, showing that a
large variety of high-, intermediate-and low-spin ground states
are established, depending on the relative values of the model
parameters. These features have also been shown to persist in a
slightly different form of the model considered here, including
an intra-site inter-orbital pair hopping term.

Some general properties of the exact analytical solution in
the infinite lattice case have also been deduced by extension
of a method which has been applied in the past to several
other correlated electron models. It relies on the fact that
when the hopping is allowed to occur to any lattice site with
equal transition rate, the kinetic and the interaction parts of
the Hamiltonian commute with each other and can thus be
diagonalized independently. Some relevant information has
in particular been obtained (i) on the dependence of the total
energy on the filling, and (ii) on the occurrence of metal–
insulator transitions at quarter, half and three-quarter filling.

In closing this section we would like to briefly comment
on the high-spin ground states analyzed in our study.
First of all, we notice that ferromagnetism in correlated
electron systems is a remarkable phenomenon for which the
research activity is still very intense. Standard theories
on its origin mainly stem on the one hand from the
Heisenberg exchange interaction picture, and on the other
hand from the Stoner criterion derived from the Hartree–
Fock approximation for band electrons. Nevertheless, it
is not completely understood whether these theories really
explain the appearance of ferromagnetism in a system of
electrons belonging to different orbitals and interacting via
spin-independent Coulomb interactions. In this context, one
of the motivations of the present study has been to provide
exact results for the degenerate two-orbital Hubbard model,
which, despite referring to an idealized situation, could be of
some help in clarifying some aspect of this debated issue. As
we saw in section 3, the occurrence of high-spin ground states
strongly depends on the sign and the magnitude of the hopping
term, as well as on the values of the Hund coupling and the
local Coulomb repulsion. In particular, relevant results found

here concern the cases of one and two holes injected within
a half-filled configuration. In the first case evident analogies
are found with the predictions of Nagaoka’s theorem for the
one-band Hubbard model, with a finite critical value of the
local Coulomb repulsion needed to stabilize the maximum spin
state, whereas in the second case the spin in the ground state
is found to be maximized for all possible choices of the model
parameters.
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